

Copyright © Nicho Wong 2025

All rights reserved; no part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise without the prior written
permission of the Author/ Publisher.

This book may not be lent, resold, hired out or otherwise disposed of by way of
trade in any form of binding or cover other than that in which it is published,
without the prior written consent of the Author/ Publisher.

No responsibility for loss occasioned to any person or corporate body acting or
refraining to act as a result of reading material in this book can be accepted by
the Publisher or the Author.

Cover layout designed by Nicho Wong.

Cover image designed by vectorjuice / Freepik and used with permission.

Nicho Wong. System Development Instant Reference.

Abstract

This book is mainly for IT professional direct and immediate reference. It covers
different aspects of system development. It is detailed enough to help them
solving the problems they encounter every day.

The reference guide is very concise. Anyone could read them quickly and learn
the knowledge in just a short time. If you encounter any special problem, you
can refer immediately to the corresponding chapter, including what items need
to be checked, what the steps are, what areas need more attention, and what
should be done.

It is based on the author's over twenty-five years of software and system
development experience in the public and private sectors, most of them have
been adopted by large corporation or government in Hong Kong and worldwide
for many years. Readers may discover that some procedures are more suitable
for projects of a specific scale, but the original intention is for reader to check
the reference first, and then customize, modify or even expand the procedures
according to own business or development needs.

TABLE OF CONTENTS
Introduction 1
Chatper 1. Project Planning 4

I. Ultimate Goal 4
II. Project Establishment 4
III. Common Scenario 6
IV. Standard, Framework & Methodology 8
V. Requirement Collection 16
VI. Development Strategy 18
VII. Design Consideration 19
VIII. Implementation Consideration 21
IX. Team Management 23
X. Vendor Management 28
XI. Cross Border Operation 29
XII. Management Task 29
XIII. Schedule Control 31
XIV. Quality Control 33
XV. Cost Control 35
XVI. Risk Management 36
XVII. Tool 37

Chatper 2. Interactivity 38
I. Definition 38
II. Identify Platform 38
III. Identify User 39
IV. Requirement Collection 40
V. Product Analysis 40
VI. Check Corporate Identity 41
VII. Interactive Elements Consideration 42
VIII. Design Process 43
IX. Information Design 44
X. Visual Interface Design 45
XI. Navigation Design 48
XII. Interaction Design 50
XIII. Audio-Visual Handling 52
XIV. Success Factor 53
XV. Other Task 54
XVI. Security Consideration 55
XVII. Prototype & Testing 56
XVIII. Product Survey 56

Chatper 3. Architecture and Coding 60
I. System Architecture 60
II. Key Player & Influencer 62
III. Learning Resources 68
IV. Environment 70
V. Programming Language 77

VI. JavaScript Libraries 88
VII. Design Principles 90
VIII. Design Pattern 93
IX. Design Approach 97
X. Framework 104
XI. Cloud Computing 115
XII. Database 124
XIII. Internationalization 127
XIV. Web & Graphics 129
XV. Mobile 135
XVI. Artificial Intelligence 138
XVII. Internet Of Things 148
XVIII. Financial Technology 151
XIX. Other Development 154
XX. Security 162
XXI. Testing 169
XXII. Debugging 171
XXIII. Performance Tuning 174
XXIV. DevOps 179
XXV. Networking 184
XXVI. Server Administration 190
XXVII. Documentation 194

Chatper 4. Data Migration and Conversion 198
I. Definition 198
II. Source Data 198
III. Data Volume & Size 199
IV. Requirement Collection 199
V. Data Collection 199
VI. Environment and Access Control 200
VII. Data Analysis 201
VIII. Relationship Mapping 202
IX. Conversion Plan 202
X. Code Development 203
XI. Roles & Responsibilities 203
XII. Data Cleansing 204
XIII. Trial Run 204
XIV. Data Verification 205
XV. Rehearsal 205
XVI. Production Live Run 206
XVII. Report & Follow Up 206

Chatper 5. Security & Privacy Protection 207
I. Definition 207
II. Identify Threat 207
III. Identify Attack 208
IV. Implement Prevention Measures 209
V. Implement Threat Detection 213
VI. Establish Incident Handling Procedures 217

VII. Enforce Privacy Protection 218
VIII. Regular Review & Support 219

Chatper 6. Procurement Plan 220
I. Requirement 220
II. Purchase Details 220
III. Market Research 221
IV. Seek for Approval 222
V. Invitation for Quotation or Tender 223
VI. Evaluation & Award 223
VII. Purchase Order 223
VIII. Invoice & Payment 224
IX. Product Delivery 225
X. Others 225

Chatper 7. User Acceptance Test Plan 226
I. Purpose 226
II. Deliverables 226
III. Scope 227
IV. UAT Round 227
V. Roles & Responsibility 228
VI. Testing Environment 228
VII. Issue Logging 229
VIII. Acceptance Criteria 230
IX. Briefing 230
X. Training 230
XI. Administrative Procedure 231
XII. System Shutdown & Resume 231
XIII. Review Meeting 231
XIV. Quality Factor 231

Chatper 8. System Rollout Procedure 232
I. Overview 232
II. Function Release 232
III. Rollout Planning 233
IV. Preparation Task 233
V. Prerequisites Check 236
VI. Rollout Task & Checklist 238

Schedule 240
Reference 246
About the Author 254

PROJECT PLANNING 6

III. Common Scenario
i. Old System Issues

Many bugs or problems encountered
Existing system difficult to use and not user friendly
System limitation and hence not flexible for specific daily operation
Previous project completed in hurry with insufficient time and resource

allocated
Only most serious issues are tackled, all the rest use temporary solution or left

unsolved
Previous vendor didn’t have the sufficient knowledge to handle due to tender

awarded only to comparatively better candidate
Previous staff are left with frustration or even fired due to high pressure under

tight schedule with no satisfactory solution come out
Limited knowledge transfer by verbal conversation, no matter technical or

business operation
Poor documentation or not up to date with some missing or inaccurate

information

ii. Common Observation
Large scale project usually cannot be completed as the original planning with

many quality issues found and involves extra human and financial resources.
Project finished either in extended time or with adjusted scope, worst case got

terminated
For project divided into phases, usually due to delay in first phase, following

phases started while first phase not complete. Too many tasked accumulated for
next phases to solve and got delay too

Situation not much difference no matter how large the company size is, where the
people is graduated from and what gender or race they are

Only simple project with experienced staff, well-known technology and familiar
business operation has a higher success rate

Tender complexity is under estimated, too many or too complicated task required
with insufficient time allowed

Tender leave too many rooms for putting additional requirement later
Over workload due to adoption of multiple approaches at the same time, i.e. cloud

and on premises environment, waterfall plus agile
Time is over spent on minor issues and work, not concentrate on the core and

major
Waste time in too many meeting with few practical uses especially for daily one
Not well aware to manage and control work to meet deadline
Time spent on mutual criticization but not focus on finding solution together
Stakeholder with highest authority involve too late and overthrow existing work
User know what they really want until the system is visualized or they could try

PROJECT PLANNING 7

User requirement changes are too many and too frequent
Controversary between user and vendor on whether new requirement is within

scope
Stick to existing approach of work and refuse to change or report even found

problem
Technical difficulties encountered that solution takes time to find out and try
Improper adoption of technology without much evaluation and too late to change
Unable to recruit suitable staff but only comparatively better
Exaggerated control work by monitoring side on vendors for own but not project

benefit
Vendor afraid of negative rating will hide all the problems even better solution

could easily be found if discussed with client together
Project Management Office with inappropriate person appointed will not function

well.
No record of requirement meeting details leading to wrong or missing

implementation
No architect to check the overall system design with different sub-system &

component
Missing hard or soft skills required for successful project management:

knowledge, human relationship, facilitation, negotiation, leadership, team
building, optimistic and perseverant.

New members added but catch up takes time cannot solve immediate problem

PROJECT PLANNING 12

ITIL (Information Technology Infrastructure Library)
It provides comprehensive set of best practices for IT service management
(ITSM) so as to align IT services with business needs and improve service
delivery. It covers the following service management processes:

Service Strategy: define how services will be delivered
Service Design: design services and processes to support
Service Transition: manage change, risk, and quality assurance during

service deployment
Service Operation: ensuring services are delivered effectively and

efficiently
Continual Service Improvement: ongoing improvement of services and

processes.

Framework details are mentioned in the in five core publications with
guidelines and best practices.

TOGAF (The Open Group Architecture Framework)
Widely-used enterprise architecture framework that provides a
comprehensive approach for designing, planning, implementing, and
governing enterprise information architecture that helps organizations align
IT strategy with business goals:

Architecture Development Method (ADM)
Step-by-step approach to develop enterprise architecture

Enterprise Continuum
Repository of architecture assets used to guide the development of new
architectures

Architecture Content Framework
Provides detailed model for developing architecture deliverables

TOGAF Reference Models
Standardized models that can be used as templates for developing
specific architectures

Both CMMI and ITIL is less use for organization now but some company or
public organization still adopt it.

It is quite expensive for training, certification, hiring certified professionals or
external quality assessor.

PROJECT PLANNING 15

iv. Other Approaches

PRINCE2 (Projects IN Controlled Environments)
Structured approach to ensure projects are well-planned, executed, and
controlled.

Defined Roles and Responsibilities: to ensure accountability and
efficiency

Continued Business Justification: ensure project is viable and
beneficial

Focus on Products: deliver tangible and usable product that meet
project objectives

Tailor to Suit the Project: adapt methodology to fit specific needs
and context

Manage by Stages: to monitor progress and control risks
Manage by Exception: make decisions within defined tolerances with

top management involved only when exceptions occur
Learn from Experience: apply lessons learned from previous projects

to improve

OGCIO Large Scale Project Implementation
Tailor makes to unique needs of large-scale IT projects for the HKSAR

government
Provide detailed guidelines for scoping, planning, and risk management,

including complexity assessment, stakeholder analysis, and defining
project boundaries and deliverables, risk mitigation and outsource
management

Observation

Follow standard and methodology prevent project from commonly known
issues if use and refer to properly but no guarantee since new problems are
constantly arise every day.

Statistics show that the effectiveness of adopting methodology such as Agile
seems to vary from project to project, and success or failure seems to be
related to managers themselves.

Quite common that known problem still exists if lack of proper management.
Better to focus on solving problem and achieve objective rather than purely

following procedure
Adaptation, adjustment or combination of different methods or approaches

may be necessary for project success. There are endless solution and
possibilities all subjected to own innovation.

Don't be superstitious on any reference unless it really helps and could solve
problem on hand.

PROJECT PLANNING 16

V. Requirement Collection
Involve all stakeholder especially top management that make the final decision
Invite front end staff responsible for daily operation since they know every

details
Meeting invitation should be sent as early as possible
If meeting not possible for all, consider sampling survey by questionnaire
Check with user existing problems, bugs, inconvenience operation, new

function preferred
Check complaint or feedback received so far
On site observation for particular problem
Use email or phone call to double check minor details
Different group of user requirement may be contradicted and need to discuss
Prototyping such as mock screen is easier for communication
For large user group, let them to consolidate first to save time if tight schedule

or extend time
Seek permission for voice recording in meeting for double check of details only
Consider to use AI technology to convert voice to text during meeting if allowed
Write down requirement in details and send to user for double validation and

confirmation
Set deadline for requirement collection and remind user earlier
Unless critical or affect normal system functioning, no additional requirement

should be added that could delay project schedule seriously
Requirement after deadline may consider back during implementation

especially if critical
Be responsive to user requirement if within scope, time and only minor effort is

involved
...

PROJECT PLANNING 18

VI. Development Strategy
After project is awarded or confirmed, system analyst or programmer could start

to research, learn and test core technology that could be used
Basic coding could start if standard framework such as Spring or Spring Boot is

used
Basic function could be developed first, e.g. system code/ parameters, account,

logging, audit trail
Pilot test core code before implementation to avoid side effect on project such

as performance
Reuse features or functions developed in other projects if possible, .e.g.

microservice
Resue if possible existing database structure or some configuration file
Multiple projects need to develop same function, assign same person(s) to work

on it
Need architect to check overall technical issue but well communicate with each

team leader
...

PROJECT PLANNING 19

VII. Design Consideration
Think from the angle of user but not developer or designer
Minimize learning curve for user
Reduce user brain burden
Interface should be easy to understand and convenient to use
Common Operation

Consider 2 factor authentication such as email for login
Prevent multiple logins at the same time to protect user account
Show outstanding task not finish to user in inbox after login
Alert user for tasks that near deadline
Remind time could be set on user own for task start, 3/4, middle, 1/4 and

due date
User’s daily, most use and important function should be placed at most

notable place
Ensure all use case are handled and no missing
Consider the most efficient and effective operation for user
Keep everything simple and avoid too complicated steps
Streamline the work flow between different parties and not miss important

one
...

Technical Concern
Responsive to different device, platform and browser use especially

resolution
Loading, response time and performance
Maximum number of transactions
Maximum number of user support
Concurrency: prevent dead lock and no overwrite for multiple user access

on same record
Multilingual support
...

PROJECT PLANNING 21

VIII. Implementation Consideration
Architecture design of what component to have, how they work together and

communicate
Block diagram listing all network nodes and the security control inside, e.g.

firewall or proxy
Calculate system sizing with reference to what data are stored and quantity with

5 years forecast
Determine CPU core, memory and storage required
Determine using on premise servers, private/ public cloud or hybrid, hybrid

increase project complexity and public cloud need to protect corporate data,
especially classified/ sensitive data

Determination of version control, repository management, deployment and
rollout tools

Use most common technology with maximum support, solution and talent
available

Use stable but not latest version to avoid problem arise with no solution on
market yet

Avoid using complicated technologies that are tied to specific products,
organization or staff

Ask for functional implementation code sample before determination of what
tool to use

...

PROJECT PLANNING 31

XIII. Schedule Control
 List out the task to be done in sequence according to submission deadline of

deliverables
 Mark down every task with detailed sub task or work breakdown for better

monitoring and control
 Check priority and dependency of all task and readjust sequence if necessary for

best arrangement to speed up task completion schedule, i.e. critical path
 Millstone should be highlighted since payment would be paid, e.g. SA&D, UAT

or Rollout
 List out target start/end date and then actual start/end date with remark in last row

with team member name with special attention to critical task with biggest effect
to the project
 Fill in by project manager or team leader (top-down), can ask the team member

to fill in estimation themselves based on past experience of similar work (bottom-
up) and adjust by system analyst
 Allow sufficient time for project task
 Buffer time cover application, feedback, approval, rejection, amendment,

resubmission and effective required days such as firewall setting
 Allow 1 to 2 weeks for user comment but prevent endless loop by user that

delay project, especially too many details in requirement collection period that
should be during implementation
 ...

PROJECT PLANNING 33

XIV. Quality Control
Early start on researching and acquiring related skill sheet
Think from user angle what could be improved and how
Make sure all user scenario and navigation path are covered
Consider efficient and effective method of implementation
Check existing best practice and implementation for reference
Seek help from supervisor, peer, technical forum (local or foreign) if necessary
Utilize testing tool available in market to detect issue earlier
Peer review especially with similar experience, could be standby resources in

future
Test major technology earlier for performance or special need
System architecture, functional specification and network diagram documented

for checking
Checklist or procedures are produced for easy follow-up and ensure no missing

items
Tender and evaluation guideline produced to ensure planned features and

functions are available
Record is for new comers to understand the project and follow up
Documentation provide sufficient details for quick reference is enough
...

PROJECT PLANNING 36

XVI. Risk Management
Evaluate from time to time the potential risk that could affect project schedule,

cost & quality
Estimate the chance of occurrence, i.e. high, medium or low probability
Estimate the severity of impact, i.e. critical, high or low
Register and report the risk by matrix to inform related parties immediately but

not wait
Discuss with all responsible parties, seek for advice on how to put the project

back on right track
* Management should never work on own assumption but check with staff
advice

Involve earlier top management making final decision or front-end staff well-
known of operation

Prefer continues & incremental change limiting project scope instead of big
change

...

INTERACTIVITY 39

III. Identify User
Consideration when designing for users:

Design based on user need and convenience but not for designer or
developer’s own favor

User information provided online may not be real, e.g. age or gender
User understanding or interpretation may be different due to background or

experience
Allow user customization on preferences such as language, communication

channel or pace
Consider cultural differences among international users
Aware of taboos and custom of target user group such as religion
Simplified term and operation plus guidance or assistance is needed for

Kids and Elderly
Increase convenience & reduce mental burden for user, no need to

remember command or code
No need for user to learn much before they could use
User operation based on previous experience and may ignore repeated

details
Don’t assume user have time to read manual or check everything in detail
Don’t ask user to do things that system could do for them
Different kinds of user:

Age, i.e. kid, teenagers, adult, retired
Gender
Language (One or more)
...

INTERACTIVITY 40

IV. Requirement Collection
Check tender requirement if available
Check requirement in depth by

Major user interview
Survey for users at distant and different location
Site visit and observation on actual work and usage
Focus group interview especially on front end operations staff
Special testing to check user preference and response of different design

Check every potential usage scenario
Walk through whole operation process or operation from start to end to check

if anything missing
Produce requirement specification and confirm with user

* Beware user may still have missing items forget to mention that need handling

V. Product Analysis
Determine the features or functions need by evaluating existing product:

Existing feature or function to be kept
Problems encountered to be solved, e.g. limitation or inconvenience
Bugs to fix
Functions that need further enhanced to have more or better feature
Simplify or combine existing functions, flow or operation
Replacement or removal of unnecessary features or functions
Introduce new function or feature to take care of new need

For product developed for the private market
Check strength & weakness by product comparison with reference to

market trend
...

INTERACTIVITY 44

IX. Information Design
Present information, convey meaning and experience to user
Information is presented with a goal, a theme and in a logical flow
It involves narrative architecture of storytelling, i.e. structuring and organizing data
Important Consideration

 Information should be accurate and clear with fact check from different reliable
sources
 Presentation should be clear, concise and visually engaging
 Progression from simple to complex, major to minor
 Content presented is the end and navigation are the mean
 Assistance to find information by visual hint (color or lines), search or guide
 Memory reinforcement by briefing before and summary afterwards

Process
I. Collection of data
II. Grouping of data by type and categories, e.g. time, location or function

III. Ranking of data by importance and use frequency
IV. Mapping data into different use and grouping

V. Determine presentation method and sequence
◆ Information delivered to user steps by steps in sequence
◆ Information is grouped and let user to select and explore in depth
◆ Only relevant information is delivered to user based on collected or

anticipated preference

 Information Arts
 Information could be presented in the form of text, graphics, sound and video in

the form of label, menu, tables, navigation planes, icons, maps, infographics or
animation
 Infographics Design Guideline

 Graph is common use for information presentation
Classification

◆ ...

INTERACTIVITY 46

Balance
◆ Maintain harmony by distributing equal weight to elements, including

negative space

 Visual Syntax
Structure: reinforce by consistent application of module
Predictability: respond to similar pattern & way
Efficiency: great production economies
Clear Focus: limited module reveals spatial logic
Flexibility: dealing with different situations
Maintainability and extensibility
Unity: tie elements work in concert for communication goal
Integrity: focus on goal by emergent form
Readability: divide content into manageable subsets
Control: predicts areas of interest and ease navigation through

composition
Proximity: associate strongly with nearby elements
Similarity: share basic visual characteristics stronger
Continuity: prefer continuous, unbroken contours, closure as complete

even with break
...

INTERACTIVITY 49

Navigation Path
Arranged in a way for free exploration or in sequential step
◆ Linear and sequential step by step operation could guarantee no

procedures are missed
Allow free exploration mode for user to check back specific
information even sequential
Organized by different purpose or functions under category or level
Avoid too many levels for menu navigation

Useful feature
Short cut for fastest access
Search with wild card and filter to locate information easier and faster
Site map and index for faster access to particular information
Bookmark or history function to go back visited location

Clear Indication
Show current location to prevent from getting lost
Show all navigation choice, e.g. Next, Previous, Exit and Return

INTERACTIVITY 58

Graphics
Presentation

Design matches with
the theme 1 2 3 4 5

I like the layout
design used in the
product

1 2 3 4 5

The interface used
good color contrast 1 2 3 4 5

Text display is clear
and easy to read 1 2 3 4 5

Interface Element
The interface is pleasant
and attractive 1 2 3 4 5

Interface elements are
consistent in look and
functionality

1 2 3 4 5

Navigation control is
appropriate or relevant to
the application

1 2 3 4 5

Navigation objects are
clear, unambiguous and
understandable

1 2 3 4 5

Navigation &
Interactivity

Operation logic is clear
and understandable 1 2 3 4 5

All functions are clearly
identified 1 2 3 4 5

Enough navigation hints is
provided 1 2 3 4 5

Current location is clearly
indicated 1 2 3 4 5

There is a clear way to
return to the main menu 1 2 3 4 5

Navigation method
between different screens
is predictable

1 2 3 4 5

I sometimes don't know
what to do next with this
software

1 2 3 4 5

ARCHITECTURE AND CODING 61

 Reliability
Fault tolerance and fail over to maintain system availability with loose
coupling design to minimize dependency and less subjected to external
changes
 Security

Protection from threats and vulnerabilities to ensure data integrity and
confidentiality
 Maintainability

Easy to update, change or extend
 Interoperability

Standard protocols and formats to facilitate communication and integration
 Usability

Easy to understand and shortest path to operate
 Effectiveness

Minimum input and maximum output
Enterprise Architecture

Strategic framework that aligns organization's business processes, information
systems, and technology infrastructure with overall goals & objectives

Features
Performance: high performance & reliability to support critical

business operations
Scalability: able to handle increased workloads as business grows
Flexibility: adapt to business requirement change such as new

processes & regulations
Security: measures to protect sensitive data & ensure normal

operation
Maintainability: easy to enhance or fix for issue or problem found

ARCHITECTURE AND CODING 62

II.Key Player & Influencer
Follow key player and influencer in order to keep up to date of the latest technical
development, including social media used by them, it could be Facebook,
Instagram, X, LinkedIn or Weibo.

Key Player
Microsoft

Microsoft Learn
https://learn.microsoft.com/en-us/

Microsoft Events Catalog
https://events.microsoft.com/

Microsoft Research
https://www.microsoft.com/en-us/research/

Amazon
Amazon Web Service

https://aws.amazon.com/free/
Cloud Computing Training & Classes

https://aws.amazon.com/training/?nc1=h_ls
AWS re:Invent

https://reinvent.awsevents.com/
Google

Android Developer
https://developer.android.google.cn/

Google for Developers
https://developers.google.com/

ARCHITECTURE AND CODING 64

Influencer
No Name Contribution

1 Adrian Holovaty Django

2 Andrew Ng Leader in AI education

3 Ben Treynor Site reliability engineering

4 Bill Gates Microsoft Founder

5 Bobby Woolf Enterprise Integration Patterns

6 Brian Behlendorf Apache HTTP Server

7 Bruce Schneier Security technologist & author

8 Craig McClanahan Apache Struts

9 David Heinemeier Hansson Ruby on Rails

10 David O. Sacks PayPal COO

11 David Silver AlphaGo

12 Demis Hassabis AlphaGo

13 Diane Greene Google Cloud

14 Doug Cutting Apache Hadoop

ARCHITECTURE AND CODING 68

III. Learning Resources
Other than key player and influencer, there are other resources to learn latest

technologies:

University Open Course
MIT OpenCourseWare

https://ocw.mit.edu/
EDX

https://www.edx.org/
Coursera

https://www.coursera.org/
Training or Events:

GitHub Universe
https://githubuniverse.com/

Tutorials Point
https://www.tutorialspoint.com/index.htm

Frontend Masters Live
https://frontendmasters.com/

Esri MOOC Training (GIS)
https://www.esri.com/training/mooc/
Blog, Forum, Social Media & Websites

BrightTALK
https://www.brighttalk.com

TechInsider
https://www.facebook.com/techinsider

TechCrunch
https://www.facebook.com/techcrunch

ARCHITECTURE AND CODING 72

Web Server
Nginx

Most popular web server known for its high performance and
efficiency

Able to handle a large number of concurrent connections
Widely used for serving static content and reverse proxy
Supports block server configurations to host multiple domains or

applications
Supports SSL termination, HTTP basic authentication, dynamic IP-

based access control, content caching and real-time performance
monitoring

OpenResty: high-performance web platform based on Nginx's non-
blocking I/O model to handle high concurrency and integrates various
Lua libraries and third-party modules, allowing developers to build
scalable and efficient web applications, web services & dynamic
gateways

Apache HTTP
Oldest and most reliable web servers
High flexibility with auto-indexing, session tracking, URL rewriting,

Gzip compression and virtual hosting features
Extensive module support, e.g. mod_rewrite for dynamic URL requests

ARCHITECTURE AND CODING 79

Language Features
Java Lambda Expressions

◆ Simplify implementation of functional interfaces
◆ Represent anonymous functions without name to enable

functional programming by allowing code to be passed as
arguments

Reflection
◆ Inspect and modify its own structure at runtime to analyze or

manipulate classes, methods, fields, and constructors.
◆ Process of determining which member fields & methods is

available on an object
◆ Often associated with Introspection to determine which methods

of an object are intended to be accessed by other objects, e.g.
getters and setters for variables.

◆ Dynamically loading classes at runtime.
◆ Inspecting or modifying object properties.
◆ Creating instances of classes or invoking methods dynamically.
◆ Frameworks like Spring and Hibernate use reflection to handle

dependency injection and object-relational mapping.
Annotations

◆ Provide code metadata to convey information to compiler or
runtime environment

◆ Built-in Annotations: @Override, @Deprecated,
@SuppressWarnings

ARCHITECTURE AND CODING 81

 C#
◆ Popular for developing Windows applications and games
◆ Influenced by Java and share many similarities, such as syntax, object-

oriented concepts, multithreading, automatic garbage collection and
extensive libraries to handle file, networking, and data structures

◆ Support Language Integrated Query (LINQ), which provides powerful
query capabilities of data sources directly within the language, e.g.
Object, XML and SQL

◆ Includes features like properties, events, and delegates
 Visual Basic
◆ Used in many legacy systems with long history
◆ Simple and easy-to-read syntax
◆ Developing Windows-based event-driven applications rapidly by drag-

and-drop design tools that respond to user events like key presses and
mouse action

◆ Excellent integration support in Visual Studio

Python
Simple and clean syntax that is easy to read and learn
No need for variable explicit declaration and type is determined at runtime
Platform-independent running on different operating systems with interpreter

installed
Automatic and manual memory management
Extensive Standard Library for web development, regular expressions, I/O,

etc.
Rich ecosystem of third-party libraries:

◆ Pandas: data manipulation and analysis with data structures Series &
Data Frame

◆ NumPy: numerical computing that support large multi-dimensional
arrays

every aspect of a plot

ARCHITECTURE AND CODING 87

NoCode Development
Allows normal non-technical users to build applications without writing

any code
Create applications rapidly by using templates and drag-and-drop pre-

built components
Create complex workflow to automate processes and manage tasks
Often with built-in integrations for popular services or APIs connecting

other tools & systems
Facilitate rapid prototyping to validate ideas and make adjustments
Product: Microsoft Power Automate, Webflow, Zapier (automation),

Airtable (data management), Comet and Makerpad
* Avoid using tools using different terms for users & developers for same
functionality, or redefine common technical terms incorrectly that create
confusion & misunderstanding easily
* Non-technical users are sometimes defined by tools using misleading terms
citizen developer

Vibe Coding
Programming with the help of AI
Describes the problem to solve on hand in details as a prompt to a large

language model (LLM), code would be generated automatically and
debugged

Perfect for rapid prototyping and even instant deployment with a shareable
URL

Tools: Cursor, Windsurf or online integrated development
environment (IDE) such as Replit

ARCHITECTURE AND CODING 88

VI. JavaScript Libraries

Asynchronous JavaScript (Ajax):
Able to handle multiple tasks without waiting for one to finish before

starting another
Once request is finished, use callback function to handle back response

jQuery
Fast and small JavaScript library with rich feature
Simplifies HTML document traversal and manipulation, event handling,

animation & Ajax
Made JavaScript easier to use

Dojo
Open-source JavaScript toolkit to build cross-platform, JavaScript/Ajax-

based applications
With rich set of utilities for DOM manipulation, event handling, and

more
Bootstrap:

Front-end framework for developing responsive and mobile-first
websites

With HTML, CSS, and JavaScript components for forms, buttons,
navigation, etc.

Above is less use since other framework libraries are more efficient, powerful and
flexible:

Node.js
Developed by Ryan Dahl initially in 2009 based on V8 JavaScript engine
Cross-platform open-source runtime environment to run JavaScript on

server side
Key Features:

Single-Threaded event loop to handle concurrent connections with
high performance

Asynchronous and Event-Driven: non-blocking I/O operations
Node Package Manager (NPM) with open-source libraries &

packages
Suitable to build fast and scalable Web Servers, create RESTful and

Microservices API services, Real-Time Applications or even create
Command-Line Tools (CLI)

Express.js
Minimalist and fast framework for Node.js
Commonly used for building APIs and web servers.

ARCHITECTURE AND CODING 90

VII. Design Principles
General Coding

Code Readability
Use Meaningful Variable and Function Names: descriptive and

reflect purpose
Consistent Formatting: consistent indentation, spacing, and line

breaks
Comments and Documentation: explain the purpose of complex

code blocks
Simplicity

Simple & Straightforward: avoid unnecessary complexity & over-
engineering

Modular Design: break your code into small, manageable functions
or modules

Reusable
Don't Repeat Yourself (DRY): avoid code duplication but reusable

function & module
Use Libraries and Frameworks: save time not to do everything from

start
Performance Optimization

Optimize Code: writing efficient code that performs well
Profiling and Benchmarking: use tools to identify performance

bottlenecks
Reliability

Always Available: service always accessible no matter how many
users at what time

ARCHITECTURE AND CODING 92

 User Centered Design
User need, desire and goal
Area that gets most attention and concern
Task to accomplish
Existing operating & navigation habits
Preferred way of interaction
Assumptions on how things should work
Increase motivation to use
Minimize effort to achieve a goal
Simplify navigation
Remove obstacles
Provide hint
Provide feedback
Help and assistance when need
Clear and distinct navigation path

Pareto Principle
Identify the most impactful tasks or elements that contribute to the

majority of the results in order to create more efficient, user-friendly,
and maintainable systems

Focus on the top 20% of features that will be used 80% of the time by
users

Identify & optimize 20% of code or processes that consume 80% of
system's resources

Simplify & improve user interface elements that 80% of users interact
with most frequently

ARCHITECTURE AND CODING 94

Singleton Design Pattern
It restricts instantiation of class to exactly one object to coordinate actions

across the system
Systems operate more efficiently with only one object, or restrict

instantiation to certain number of objects, e.g. system with single-gateway
object managing connection to old system

Implementation:
Single Instance that class create as single instance
Global method of same instance: global class method that returns

reference to instance
Private Constructor: declare class constructor as private to prevent new

instance creation
Property method get Instance:
i. Only first call create instance

Observer Design Pattern
Observer (View) is object to display data to user
Subject (Model) is business abstraction modeled from the concerned

domain
Observer registers Subject of interest and unregisters if no more interest

Factory Design Pattern
Handle object instantiation (new) & initialization (constructors) that

creates explicit association between creator & created classes
Use factory methods to create objects without specify exact class of object

to be created

ARCHITECTURE AND CODING 98

Common Tools Implementing EIP
Apache Camel: open-source integration framework that implements

EIP
Spring Integration: framework provides support for EIP within

Spring ecosystem
Mule ESB: enterprise service bus that supports EIP
Red Hat Fuse: integration platform that implements EIP

Service Oriented Architecture
Architectural approach that designs software as a collection of loosely

coupled services
Key Concepts

Service: self-contained unit of functionality that performs specific
task or business process that is loosely coupled, reusable, independent
deployed & managed

Service Provider: creates, maintains, publishes service
Service Consumer: discovers, invokes & uses service based on

requirement

Key Components
Web Services: implementation based on standards Simple Object

Access Protocol (SOAP) and Representational State Transfer
(REST)

Service Bus: intermediary that facilitates communication between
services, often implemented as an Enterprise Service Bus (ESB)

Business Process Execution Language (BPEL): for orchestrating &

ARCHITECTURE AND CODING 101

Functional Programming
treats computation as evaluation of mathematical functions
avoids changing state and mutable data
use of pure functions, immutability, and declarative programming to make

code more predictable, easier to understand, and easier to test
Key Concepts

Pure Functions: always produces same output for same input & has
no side effects

Data Immutability: not change once created and use new data
structures for modification to prevent unexpected side effects

First-Class Functions: they can be passed as arguments, returned
from other functions, or assigned to variables to enable higher-order
function for more flexible & reusable code

Higher-Order Functions: take other functions as arguments or return
functions as results to facilitate code reuse & composition and easier
to build complex functionality

Declarative Programming: describe what to do rather than how to do
using expressions to make code more concise & closer to domain, to
improve readability & maintainability

Recursion: function calls itself to solve smaller instances of same
problem

Common Functional Programming Languages
Haskell: pure functional programming language with strong

static typing & lazy evaluation.
Lisp: oldest programming languages that supports functional

programming
Erlang: for concurrent & distributed systems that emphasize

immutability & message-passing.
Scala: combines functional and object-oriented programming

features and runs on the Java Virtual Machine (JVM).
F#: functional-first language running on .NET platform and

supports both functional and object-oriented programming.
JavaScript (with libraries like Underscore.js and Lodash):

supports functional programming concepts.

ARCHITECTURE AND CODING 102

Lambda Architecture
Handle large-scale data processing by combination of batch & real-time

data processing
Key Concepts

Batch Layer: processes large amounts of historical data and
produces batch views using distributed storage systems like HDFS &
processing frameworks like Hadoop

Speed Layer: T deals with real-time data processing to provide low-
latency updates using stream processing frameworks like Apache
Storm or Spark Streaming

Serving Layer: merges result from batch & speed layers to provide a
unified view of the data and serves processed data to users for querying

Generate raw data (logs) continuously or in batches
Message queue collects raw data and feeds it to both layers
Data is stored durably as an immutable master dataset often in distributed

file system
Computes accurate, historical views over all data
Raw data lives in a fault-tolerant store
Processed results go to serving layer
Periodically reprocesses entire dataset hourly or daily to update batch views
Processes recent data in real time for low-latency insights using in-memory

stores such as Redis or lightweight databases for quick access
Updates views incrementally as new data arrives to compensate for batch

layer delays
Merges batch and speed layer outputs for queries using NoSQL databases,

indexing systems (Elasticsearch), or analytics platforms (Druid)
Provides a unified view, i.e. batch for historical accuracy & speed for recent

updates
More complex & need to maintain 2 separate codebases for batch &

stream processing

ARCHITECTURE AND CODING 104

X. Framework
Framework provide pre-built libraries, tools, and templates that speed up
development and reduce the code need to write.

I. Java
Spring

 First developed by Rod Johnson in late 2002 for enterprise development,
latest version is 6.0.
 Comprehensive infrastructure support: Object Lifecycle Management,

transaction management, data access, messaging, remote procedure call,
XML and testing, etc.
 Main Features

 Inversion of Control (IoC) :
◆ Not create object, call services or components directly but define

inside configuration
◆ Configure container by XML or Java annotations such as

@Resource, @Inject or Spring specific annotations, e.g.
@Autowire, @Qualifier and @Primary

◆ Framework control over implementations of dependencies used by
objects

◆ Dependency lookup: framework look for object with reference by
name or type

◆ Dependency injection:
-object/function receives other objects/functions required instead of

internal creation
-container passes objects via constructors, properties or factory

methods
◆ Autowiring: auto resolve & inject collaborating beans

(dependencies) into class without requiring explicit configuration
◆ Disadvantage: code difficult to trace since it separates behavior from

construction
 Aspect-Oriented Programming
◆ Concept developed mainly by Gregor Kiczales at Xerox PARC
◆ Implement cross-cutting concerns or functionalities span across

multiple modules : log
◆ Add behavior to existing code (advice) by specifying which code is

modified via pointcut specification without code modification e.g.
add logging function

◆ Proxy pattern-based that configured at run time
◆ Interception allows for public method-execution on existing

objects at join point
◆ Disadvantage: control flow is obscured and unclear

ARCHITECTURE AND CODING 111

Apache Kafka
Distributed event streaming platform capable of handling trillions of

events per day
For high-performance log aggregation, real-time analytics, event sourcing,

and integrating different systems with real-time data pipelines
Distributed architecture with fault-tolerant running as a cluster of servers

that can span over multiple data centers
Allow horizontal scalability by adding broker nodes to cluster for massive

amounts of data
Optimized for high throughput that can process large volumes of data with

low latency
Data persisted on disk & replicated across multiple nodes to ensure

durability & reliability
Allows multiple producers to publish messages to topics and multiple

consumers to subscribe to those topics
Streams API for processing data streams in real-time or complex event-

driven applications
Kafka Connect for connecting external systems, e.g. databases, key-value

stores, search indexes, and file systems.

Apache Karaf
Built on OSGi framework, which allows for modular and dynamic

application development
Main Features: shell console, remote access, hot deployment, and dynamic

configuration
Web management console allows plugin management, debugging, and

OSGi monitoring

Apache Camel
 Integration framework and message-oriented middleware that provides

components and patterns for routing and mediation rules
 Use declarative Java domain-specific language to configure routing and

mediation rules

ARCHITECTURE AND CODING 118

Alibaba Cloud
Dominates in Asia, scalable services tailored to e-commerce, big data

& Chinese market
Major Services

Compute: Elastic Compute Service (ECS), Function Compute
Storage: Object Storage Service (OSS), Block Storage
Database: ApsaraDB (RDS, NoSQL options like MongoDB)
AI/ML: Machine Learning Platform (PAI)
Big Data: MaxCompute (data processing)
Other: CDN, e-commerce, and IoT solutions

Private & Hybrid Cloud
Private clouds are built sometimes due to superior security requirement

by keeping data within a dedicated environment to reduce the risk of
unauthorized access and data breaches

Use cloud management platform to manage cloud infrastructure, e.g.
OpenStack

Implement automation tools to manage virtual machines, resources
and configuration, e.g. Ansible, Puppet, or Chef

Use container orchestration tool that automates deployment, scaling,
and management of containerized applications, e.g. Kubernetes
(K8s)

Hybrid clouds use public cloud for non-sensitive tasks but keep critical
data on private cloud

Cloud Native
Design & deployment of applications for cloud environments
Applications take full advantage of cloud 's scalability, elasticity,

resilience, and flexibility
Key Aspects
 Microservices Architecture

 Application is divided into smaller, loosely coupled & independent
services

 Services can be deployed and scaled out individually across cloud
 Flexibility in choice of technology and programming language for

each service

ARCHITECTURE AND CODING 120

◆ Rate Limiting
 Prevent abuse and ensure fair usage of the API

◆ Caching
 Improve performance and reduce server load

 Service Mesh: infrastructure layer that manages service-to-service
communication e.g. Istio works with Kubernetes to provide load
balancing, service discovery, authentication, and monitoring
capabilities

 Open Service Gateway Initiative (OSGi): framework for
modular development of Java often used in large enterprise
applications that allow applications to be composed of multiple
reusable components (bundles) to be deployed in containers

 Containers
 Package code & dependencies by Docker to ensure consistency

across environments
 Orchestration

 Manage containers, automate deployment & scaling by tools like
Kubernetes:

Pods: smallest & simplest unit in Kubernetes object model to
represent run process instance containing containers that share
storage or network resources

Services: abstraction that defines logical set of Pods & access
policy that enable communication between different parts of
application inside or outside cluster

Deployments: abstraction manages deployment & scaling of
Pods that provide declarative updates for Pods & ReplicaSets
to ensure desired state of application

ReplicaSets: ensure specified no of pod replicas are running at
any given time.

ARCHITECTURE AND CODING 125

OLTP (Online Transaction Processing)
Designed for high transaction volume, real-time processing & ensuring data

integrity
High Transaction Volume supports large numbers of short, online

transactions
Real-Time Processing to ensure transactions are processed quickly
Data Integrity by using mechanisms ACID (Atomicity, Consistency,

Isolation, Durability)
Object Relationship Mapping

Mapping between objects in application and tables in a relational database
Avoid code that are repeated in multiple places with little or no variation
Improve productivity when working with database operations

Object Oriented Database
Stores data in objects like structured data in object-oriented programming

languages
Support class hierarchies & inheritance to represent complex relationships

between objects
Encapsulation of data and behavior
Reusable across multiple applications, scalable and suitable for large data

Object Storage
Designed to store large amounts of unstructured data, such as media files,

backups, and logs with high scalability and durability. It's commonly used
in cloud storage solutions.

data storage architecture that manages & manipulates data storage as
objects

includes Metadata of information like file type, size, creation date &
permissions

unique identifier to retrieve object from storage pool
often stored with redundancy, ensuring data is protected against hardware

ARCHITECTURE AND CODING 127

XIII. Internationalization
Encoding Standard defines how characters, symbols, and control codes are

represented in binary form for computer processing and storage
Unicode

Universal character encoding standard that encompasses worldwide
characters & symbols

Allows multiple languages to be processed in a single file seamlessly
Facilitates global communication and data exchange between different

systems & devices
Accommodates the addition of new characters and scripts
Code Point: numerical value that maps to specific character, e.g. code

point for 'A' is U+0041
Encoding format:
 UTF-8: most widely used Unicode encoding format uses 1 to 4 bytes

per character:
 1 Byte: ASCII characters in U+0000 to U+007F
 2 Bytes: Characters in U+0080 ~ U+07FF for Greek and Cyrillic

characters
 3 Bytes: Characters in U+0800 ~ U+FFFF for Chinese, Japanese,

Korean characters
 4 Bytes: Characters in U+010000 ~ U+10FFFF for emojis and

ancient scripts
 UTF-16: uses two or four bytes per character
 UTF-32: uses a fixed length of four bytes per character

ARCHITECTURE AND CODING 131

Web3
Blockchain Foundation

Distributed ledgers (e.g., Ethereum, Solana) store data and execute
code across thousands of nodes to ensures transparency, immutability,
and no single point of failure

Smart Contracts
Self-executing programs on blockchains automate trustless
interactions

Decentralized Applications (DApps)
 Apps with frontends (like Web 2.0) but backends on blockchains
 Connect via wallets like MetaMask, using crypto for access or

payments.
Identity and Ownership

 To replace username with cryptographic key wallet to prove
ownership of assets/data
 Unique tokens NFTs to certify ownership on-chain such as digital

art or game items
Decentralized Storage

Store files across nodes to complement blockchain’s limited capacity
Web 4.0
 Not officially define but concept and speculation
 Ultra-intelligent and Symbiotic Web almost seamless with real life
 AI-driven web with enhanced capabilities for data analysis, prediction

& automation
 AI assistants by smart devices called Think IoT

ARCHITECTURE AND CODING 133

Graphics and Animation API
 DirectX: API bypass Windows Graphical Device Interface (GDI) & direct

communicate with hardware:
Direct3D, DirectDraw, DirectMusic, DirectPlay, DirectSound. Latest
version is 12.
 OpenGL: cross-platform graphics APIs for rendering high-quality graphics
 Vulkan: low-overhead, cross-platform API for high-performance graphics
 Metal: Apple's graphics and compute API designed for iOS, macOS, and

tvOS
 WebGPU: web graphics API that provide modern GPU access for web

applications
 WebGL: JavaScript API for 3D & 2D graphics rendering on web browser

Sound and Music
 FMOD: middleware used for implementing sound effects and music in

games with straightforward, DAW-like (Digital Audio Workstation)
interface
 Wwise: middleware for dynamic mixing, spatial audio & interactive music
 Audacity: free and open-source audio editing tool

Networking
 Photon: networking solution for creating real-time multiplayer online games
 Netcode for GameObjects/ Entities, Mirror: Unity library for creating

client-server network model, cooperative-style or competitive action games
 UNet: Unity's simpler networking solution that lacked scalability &

performance, deprecated
Artificial Intelligence

 Pathfinding Algorithms: A* (A-star) like algorithm widely used for
finding shortest path between two points especially for Non-Player
Character navigation that often involves Waypoints or specific points use to
navigate in environment
 Behavior Trees: ideal for complex AI behaviors, decision-making, and

hierarchical tasks that using hierarchical structure where nodes represent
tasks or actions, can be composite (containing other nodes), decorators
(modifying behavior), or leaf nodes (actions or conditions).
 Finite State Machines: suitable for simple and predictable behaviors consist

of states that represent specific behavior or action, and transitions that occur
based on conditions or events

* Synchronization between video, animation, and sound is indeed crucial for
creating high-quality human animations that lip movements need to match with the
dialogue.

ARCHITECTURE AND CODING 136

Enterprise Mobile Management (EMMI)
Enable businesses to provide employees with the flexibility to work from

anywhere
Set of technologies, processes, and policies used to manage and secure

mobile devices
Ensuring corporate data remains secure and no allowed applications to be

installed
Identity and Access Management (IAM) handles authentication,

authorization, and single sign-on (SSO) capabilities
Mobile Device Management (MDM) handle device enrollment,

configuration, security enforcement, and remote data wiping.
Mobile Application Management (MAM) manages deployment, updating,

and removal of mobile applications on devices. Control app permissions
and only approved apps are used

Mobile Content Management (MCM) ensure secure access to corporate
content like document sharing, editing, and synchronization while ensuring
data security

Enables organizations to implement Bring Your Own Device (BYOD)
policies without the need for company-owned devices

Specific EMM services to be installed on-premises or cloud
Require paid licenses or subscription

Weixin/ WeChat
Develop lightweight apps called Mini Programs using JavaScript, WXML,

and WXSS
Development Tools: Use the WeChat Developer Tools for coding,

debugging, and testing
Access Weixin's APIs for features like payments, social sharing, and user

authentication
Resources: https://developers.weixin.qq.com/doc/

Alipay
Alipay supports Mini Programs for app development
Use the Alipay Developer Platform for tools, APIs, and SDKs
Integrate payment solutions, marketing tools, and user management features
Resources: https://developers.alipay.com/

HarmonyOS Next (HongMeng Xingheban)
Use integrated development environment DevEco Studio to create apps
Supports ArkTS (TypeScript-based language) & ArkUI to build apps
HarmonyOS SDK includes tools for app frameworks, system development,

media, AI, etc
Utilize DevEco Testing for automated testing and debugging
Publish your app on Huawei's AppGallery
Resources: https://developer.huawei.com/consumer/cn/develop/

ARCHITECTURE AND CODING 138

XVI. Artificial Intelligence
Artificial Intelligence (AI)

Computer systems capable of performing tasks typically require human
intelligence, such as learning, reasoning, problem-solving, perception, language
understanding & decision-making

Artificial General Intelligence (AGI)
The ability to understand, learn, and perform any intellectual task that a human
can with the aim to replicate broad cognitive abilities of humans across a wide
range of domains

Generative AI
AI systems designed to create text, images, music, or video content.

Robotic Process Automation (RPA)
Automates repetitive tasks and processes to increase efficiency and reduce
operational costs

Embodied AI

Development
Turing Test by Alan Turing in 1950: measure of machine's ability to

exhibit intelligent behavior indistinguishable from that of a human
Symbolic reasoning: Logic Theorist and General Problem Solver
Rule-based system: Expert Systems that use extensive knowledge bases

to simulate decision-making process of human experts
Neural Network: perceptron that learn from data
Machine Learning (ML)

Data-driven approaches using statistical methods
Algorithms designed to learn from data and improve over time

Deep Learning
deep neural networks with many layers
process vast amounts of data (Big Data) and perform complex tasks

such as image and speech recognition, natural language processing

ARCHITECTURE AND CODING 140

Problem: when calculate slope, i.e. gradient of loss function with
respect to a parameter, it becomes very small, almost close to zero
(vanishing gradient). Hence, during backpropagation (adjusting
network), these parameters barely get updated, especially in earlier
layers of network where changes are so small as if not learning much
at all
Convolutional Neural Networks (CNN)

Specialized neural networks designed for processing grid-like data
Use convolutional layers to auto learn spatial hierarchies of features

adaptively
Use sliding filters to scan and detect patterns sch as edges & shapes

across the input

Generative Adversarial Networks (GAN)
Overview: GANs consist of two neural networks, a generator and a

discriminator, that work against each other to generate realistic data.
Generator creates fake data, while the discriminator evaluates its

authenticity, leading to the generation of high-quality synthetic data.
Good for creative AI generating images, audio, or text but tricky to train

and unstable

Long Short-Term Memory (LSTM)
Type of RNN capture long-range dependencies & maintain information

for long periods.
Use gates to control the flow of information, addressing the vanishing

Feedforward Neural Networks (FNNs)
Simplest neural net that data flows straight from input to output with

no loops or memory

ARCHITECTURE AND CODING 142

AI Agent
Autonomous entity interacts with environment to achieve specific goal
or perform task that can perceive surroundings, make decisions based
on observations & take actions to influence

OpenManus
Open-source alternative to Manus AI agent, developed by

MetaGPT community
Available free on GitHub to anyone with basic technical skills.
Modular framework that allows users to build customizable

AI agents capable of autonomously handling complex tasks,
from coding to data analysis

Transformer
 Neural network model that revolutionized natural language

processing (NLP), speech recognition and computer vision with
parallel processing and scalability
 Key Components

 Self-Attention Mechanism
Weigh importance of different words in sentence relative to each
other and capture long-range dependencies so as to understand data
contextual relationships

 Multi-Head Attention
Understand complex relationships by capture various aspects of data
in parallel and focus on different parts of input data simultaneously
using multiple attention heads

ARCHITECTURE AND CODING 144

AutoGen
Known for its flexibility & ease of use in developing AI agents for

various applications.
Semantic Kernel

Focuses on natural language understanding and generation
CrewAI

Emphasizes collaboration between multiple AI agents to solve
complex problems
RASA

Popular for building conversational AI agents that interact with
users in natural manner

Generative Models
Variational Autoencoders (VAEs) generate blurry image by mapping

input data into lower-dimensional latent space (encoder), produce
probability distribution for latent variables & then reconstructs original
data from it (decoder)

Diffusion Models generate high-quality images by gradual transform
noise into meaningful outputs through Forward Diffusion that add noise
to input data in steps until becomes pure noise; and Reverse Diffusion
using neural network to remove noise & recover original data

Model Context Protocol (MCP)
Open standard by Anthropic to streamline how LLMs connect to external

data sources/ tools for building agents & workflows
Defines how contextual information is exchanged between client & server,

e.g. message framing, linking requests with responses & high-level
communication patterns

Agent2Agent Protocol (A2A)
Google Open protocol that facilitates communication & coordination between
multiple AI agents

Large Model Systems Organization (LMSYS)

ARCHITECTURE AND CODING 147

Al Benchmarks
Essential tools to evaluate performance, accuracy & efficiency of AI models
Provide standardized tests & metrics to compare different models
Common AI benchmarks:

AIME 2025 American Invitational Mathematics Examination test with
problems

Chatbot Arena (LMArena): test crowd-sourced, blind A/B test where
users vote on model responses

Geekbench AI: cross-platform benchmark using real-world machine
learning tasks to evaluate on-device AI capabilities & workload
performance of CPU, GPU & NPU

General AI Assistants (GAIA): evaluate performance on real-world
tasks with focuses on reasoning, multi-modality handling, web
browsing & tool-use proficiency

GLUE/SuperGLUE: early standard for language understanding, test
sentiment analysis, question answering

GPQA (Science): test graduate-level PhD questions on physics,
chemistry & biology

ImageNet: vision benchmark on image classification with 1,000
categories & 1.2M images

LiveCodeBench: test real-world coding tasks from 2024-10 to 2025-
02, testing functional code generation

ARCHITECTURE AND CODING 148

XVII. Internet Of Things
Internet of Things (IoT)

Network of physical devices, vehicles, appliances, and other objects embedded
with sensors, software, and network connectivity, allowing them to collect and
exchange data

AIoT: combines Artificial Intelligence (AI) with the Internet of Things (IoT)
Usage: cost-saving automation, gather real-time data for decision making,

enhanced customer experience, connect & remote-control applicants, and access
information from anywhere

Application
Agriculture: guide irrigation
Healthcare: patient monitoring and alert for emergencies
Industrial Automation: monitor machinery, predict maintenance or

optimize supply chains
Retail: track inventory and enhance customer experiences
Smart Cities: managing traffic patterns and autonomous driving

Requirement
Sensors or other devices that collect/transmit data, track location, detect

or avoid obstacle
e.g. temperature, humidity, motion, light, pressure, proximity & gas sensors,
camera & GPS

Data Processing & Analysis software and hardware that analyze data
locally or in cloud

User Interface including mobile apps, web dashboards, wearable devices,

ARCHITECTURE AND CODING 153

Financial Technology (Fintech)
 Innovative use of technology to deliver financial services and products
 Application of various technologies like blockchain, artificial intelligence,

big data, and mobile applications in providing traditional financial services:
1. Digital Payments: peer-to-peer mobile payment & digital wallets
2. Lending: peer-to-peer lending services and platform
3. Investments: Robo-advisors, online algorithmic trading &

cryptocurrency exchanges
4. Personal Finance: Budgeting apps & finance management tools.

Blockchain
 Decentralized, secure digital ledger technology that records transactions

across a network of computers to ensure no single entity to controls it and
data cannot be easily altered
 First introduced with cryptocurrencies Bitcoin by Satoshi Nakamoto
 Decentralized Finance (DeFi): new financial system enables direct peer-

to-peer transactions without traditional bank and offer decentralized
lending, borrowing, & trading services
 Digital Identity Verification: provides secure and tamper-proof digital

identities, reducing fraud and enhancing trust in financial transactions
 Smart Contracts: self-executing contracts with terms directly written into

code, transactions execute automatically if met predefined conditions to
reduce the need for intermediaries
 Tokenized Assets: tokenization of real-world assets, e.g. Non-Fungible

Token (NFT) to represent ownership or proof of authenticity of unique
item or piece of content

 Decentralized Application (DApp)
Application runs on decentralized network rather than centralized server,

e.g., blockchain
Leverages smart contracts to automate processes without intermediaries

i.e. self-executing code stored on blockchain

ARCHITECTURE AND CODING 158

Big Data
Huge & complex datasets traditional tools unable to handle with

following characteristics:
Volume: sheer amount of data being generated in tera or petabytes
Velocity: data is generated & processed at real-time or near-real-

time data streams
Variety: different data types such as text, images, videos or sensor

collected data in structured, semi-structured or unstructured format
Implementation

Identify use cases & data sources
Setup & deploy distributed computing framework to handle scale,

e.g., Hadoop, Spark
Collect and stream data using data ingestion tools such as Kafka for

real-time data
Store data in data lakes (centralized repository) or NoSQL DB such

as Apache Cassandra or MongoDB
Analyze data using batch or stream processing techniques
Build dashboards or reports for insights by data visualization tool

Tableau, Power BI

ARCHITECTURE AND CODING 161

Quantum Computing
 Cutting-edge computing that uses principles of quantum mechanics to

process information
 Use quantum bits or qubits that exist in multiple states simultaneously

(superposition) and be entangled with each other (entanglement)
 Unlike classical bits that represent either 0 or 1, qubits can represent both 0

and 1 simultaneously and hence could perform massive parallel
computation
 State of one qubit is directly related to state of another, even if they are

separated by large distances and this allows faster and more efficient
information processing
 Use quantum gates to manipulate state of qubits to perform calculations
 Quantum computers enhance machine learning and artificial intelligence to

solve complex problems, factor large numbers, optimize logistics, or
simulate molecular interactions at an atomic level and could even break
current encryption methods
 It is built with superconducting circuits, trapped ions, or photons, cooled to

ARCHITECTURE AND CODING 162

XX. Security
Check OWASP Top 10 most critical web application security risks from time

to time:
Broken Access Control: users access data or perform actions they shouldn't

be able to
Cryptographic Failures: incorrect implementation leads to sensitive data

exposure
Injection: attackers inject malicious code into a program
Insecure Design: design flaws that can be exploited
Security Misconfiguration: incorrect configuration & settings leave

applications vulnerable
Vulnerable and Outdated Components: use components with known

vulnerabilities
Identification & Authentication Failures: user authentication & session

management issues
Software & Data Integrity Failures: unable to ensure integrity of software

& data

Run code scanning tools to identify common issues such as Codacy or
SonarQube

Run free OWASP Zed Attack Proxy (ZAP) to scan web applications for
security vulnerabilities

Apply server setting to tackle common security issues
Hide server and operation system version to prevent exposing server

information
Disable directory listing to prevent visitors from seeing contents
Obtain valid certificate from trusted Certificate Authority (CA) to configure

SSL/TLS to use HTTPS communication between server and client
Limit Request Size to prevent denial-of-service (DoS) attack

ARCHITECTURE AND CODING 164

XSS Cross-Site Scripting Attack
Attackers inject malicious scripts into web pages viewed by other users

Issues
Stealing user information
Tampering with web page content
Spreading malware

Types
Reflective XSS: script reflected off a web server, e.g. in a search result

or error message
Stored XSS: stored on server, e.g. database, sent to users when request

relevant content
DOM-based XSS: script executed after modify DOM environment in

victim's browser
Causes

Insufficient input validation
Improper output encoding

Solution
Strict input validation & filtering dangerous characters & scripts
Appropriate Output encoding for output data, e.g. HTML entity

&specific contexts
◆ HTTP security header settings by using Content Security Policy

(CSP)
◆ Set X-XSS-Protection response header in web server
Secure development practices
◆ Use secure programming frameworks and libraries to auto handle
◆ Conduct code audits and security tests regularly

* Usually, will escape ore replace special character, e.g.< or > to prevent
inserting code
* To ensure normal display of Asian text, bypass them by checking character
code point

ARCHITECTURE AND CODING 168

 OAuth
Open standard for access delegation to grant applications limited
access to user info
◆ Approve interaction on behalf of resource owner or third-party

application obtain access on its own behalf
◆ OAuth 2.0 often uses JSON Web Tokens (JWT) as access tokens

to securely transmit information between parties in string
containing
➢ Header metadata about the token signed using algorithm

HMAC SHA256
➢ Payload with actual data called claims in base64-encoded

JSON
➢ Signature cryptographic hash created using secret key or

public/private key pair to prove the token wasn’t tampered
with

◆ User logs in, server issues JWT, client sends JWT in HTTP
headers with each request, server verifies signature and trusts the
payload without hitting a database

 OpenID Connect (OIDC)
◆ Simple identity layer on top of the OAuth 2.0 protocol
◆ Extends OAuth 2.0 that uses tokens for access by adding an ID

Token
◆ When user login, Relying Party (RP) redirects to the OpenID

Provider (OP)
◆ OP sends back ID Token in JWT with your identity info, or

optional Access Token for accessing APIs (OAuth-style) and
Refresh Token to get new tokens later

◆ RP checks ID Token’s signature using the OP’s public key to
trust it.

ARCHITECTURE AND CODING 170

Scenario
Basic

Check features listed in Tender Requirement
Check Requirement Specification on all user stories
Make sure all functions listed in functional specification is tested
Checking meeting record
Check email from user on additional or changed requirement

Testing Techniques
Boundary: null, minimum and maximum value
Type: try different data type, i.e. incorrect value
User Group: try different user group with different authorization
Concurrency: multiple users performing same function at same time

or period

Data
Use automation tool to generate different set of data (often need

correction)
Apply production down time at non-office hour to test real data

(encrypted if necessary)
Devicess

Different configuration, e.g. CPU, memory and storage
Different software version installed
Different network segment with different firewall or proxy setting
Different network environment Wireless and LAN

Personnel
Peer Review especially helpful if outside project

Tools:
Use Junit to check bug earlier

ARCHITECTURE AND CODING 171

XXII. Debugging
Difficulties

No specific environment or product to check, e.g. payment gateway in non-
production platform or product of different version

No exact data to test due to security and privacy protection
No access to specific platform due to highly sensitive environment, e.g.

police department
No related equipment such as old machine of low performance configuration

Strategy
Check and interpret error messages correctly but sometime error is due to

other causes
Record down error code returned if any and search on web may help, many

times unable to solve problem but provide hints and direction to look & deep
dick into the problem further

Check and review logical flow steps by steps to find out problem or what is
missing

Trace potential area first, then narrow down the scope steps by steps until
root is traced

ARCHITECTURE AND CODING 172

Logging
Place trace code in function start & exit, record down start & end time to

check time spent
Record down who, when and what action to take inside the code
Record down value changes of specific variable before and after the function
Output statement, variables value or error message to console or log file

using datetime format
Apply log rotate to zip the log file every 3 months at least to save server

Techniques
Check both client console, server and event log for error
Check whether data value has been written down into database
Common issues: typos, scope, libraries, permission, connection, setting or

corrupted data
Trace if nothing returns after specific external call, e.g. asynchronous call
Check if code fall into endless loop
Check if any deadlock or value overwrite for concurrent process
Check CPU, Memory and storage size usage during function execution
Source Code

Make sure error is caught or report by implement try...catch blocks or
similar mechanism

Write unit tests using testing frameworks to catch bugs early

ARCHITECTURE AND CODING 174

XXIII.Performance Tuning

Round Trip Time (RTT): key performance metric for web application
responsiveness that performance tuning target to reduce, i.e. entire process of
sending request from the client to the server, and sending back a response from
server to client after processing.

Analysis
Trace and locate where the problem occurs by following ways:

Debug logging to record function start & end time to calculate
processing time

Use performance monitoring tools to gather statistics, e.g. JMeter,
Neoload, etc

Server
Scale Up (Vertical)

CPU: add or upgrade
Memory: add or replace with faster memory

Scale Out (Horizontal)
Network configuration: load balancing or clustering to distribute load

among servers
Add server in on premise
Server replication under cloud environment

Proxy server to provide caching or request only after change or expire
Reverse Proxy to distributes incoming client requests across multiple

backend servers and compresses responses from backend servers before
sending to clients

ARCHITECTURE AND CODING 177

Views are virtual tables that simplify complex queries but
performance gains or not depend on underly query efficiency & how
DB engine handles it, e.g. indexed views

Clustering to distribute load among different server, e.g. Oracle Real
Application Clusters

Use flashback to quickly recover from human errors by undoing changes
at various levels (row, transaction, table, or entire database) without
backup restore, e.g. Oracle's Flashback

Programming
Close unused object resources to clear memory, i,e, manual garbage

collection
Use variable binding instead of writing single SQL to reduce script

compilation
Display loading message and show remaining time to wait
Apply asynchronization to avoid keep waiting for other tasks to

complete
Allows program to perform multiple tasks at the same time by multiple

processors or cores
Parallel processing to divide task into sub-tasks that can be processed

simultaneously
Run multiple threads in pool concurrently & use worker thread to

offload time-consuming tasks from main thread
Caching: page, object, application

ARCHITECTURE AND CODING 179

XXIV.DevOps
Philosophy and set of practices that encourage better collaboration between

application development (Dev) and system operations (Ops) teams
Adoption of iterative development, process automation, programmable

deployment and maintenance to ensure continuous software delivery with
quality

Common Practice
Configuration Management

 Systematic change management throughout system lifecycle to ensure
system is configured correctly, tracked, working as expected, update in
controlled manner that won’t break the system
 Key Aspects

Identify configuration items (CIs), establish baselines of security &
performance

Control planning, implement change control process, evaluation &
approval

Status Accounting to track & report status of CIs & change
requests with automation

Audit to verify that CIs conform to requirements and ensure system
integrity

 Key Components
Artifact Repository

Centralized location to store build artifacts, libraries &
dependencies

Source Code Repository
Stores and manages codebases and their history

Configuration Management Database (CMDB)
Store information and track state of hardware, software, networks,
and other assets

 Tools
Ansible: open-source automation tool uses YAML-based

configuration, no agent to install, orchestrate complex workflows
across multiple systems, automates repetitive tasks and workflows
and secure handling of credentials and sensitive data

Puppet: open-source CM tool that uses declarative language,
enforced by Puppet agent, modular code with detailed reports,
monitoring and tool integration capabilities

Chef: automation platform that transforms Infrastructure as Code
(IaC) that manage and automate infrastructure in scalable and
efficient manner

ARCHITECTURE AND CODING 184

XXV. Networking
Performance

Ensure sufficient bandwidth to handle the expected data traffic and
avoid bottlenecks by calculating the size of data to be transmitted,
numbers of concurrent users and the overhead for data transmission, i.e.
request/response lines and headers.

Minimize latency to ensure timely data transmission by upgrading to
higher-speed connections such as fiber optics, use dedicated link,
implement Content Delivery Networks (CDNs) that distribute content
closer to users

Implement load balancing to distribute traffic evenly across servers and
prevent overloads

Monitor network performance to identify and address issues promptly
Reliability

Use backup servers or multiple network paths to ensure continuous
operation if any failures

Security
Use Hypertext Transfer Protocol Secure (HTTPS) to secure data

communication between client and server
Original protocol Secure Sockets Layer (SSL) for data communications

encryption, even 3.0 is now considered insecure, and has been replaced
by Transport Layer Security (TLS)

TLS 1.3 is recommended for new implementations due to its enhanced
security and performance but TLS 1.2 is also considered secure and is
widely used

ARCHITECTURE AND CODING 187

Storage Area Network (SAN)
Enhance storage devices' accessibility to servers, as if locally attached
Add or expand storage using disk arrays & tape libraries to accommodate

storage needs
Offer high-speed data transfer rates by using Fibre Channel (FC)
Use Host Bus Adapters (HBAs) to connect servers to SAN
Use SAN Switches to manage data flow between using
Data mirroring and replication to enhance data protection & disaster

recovery capabilities
Widely used in data centers and support virtualized environments
Centralized management of storage resources
Utilize Redundant Array of Independent Disks (RAID) configurations to

combine multiple physical hard drives into a single logical unit for data
storage

Provides fault tolerance by storing redundant copies of data across
multiple drives

Allowing parallel access and improving overall performance
Common RAID Levels

 RAID 0 (Striping): distributes data evenly across all drives
without redundancy
 RAID 1 (Mirroring): duplicates data on 2 or more drives, fault

tolerance & fast read
 RAID 5 (Striping with Parity): distributes data & parity info

across 3 or more drive
 RAID 6 (Striping with Double Parity): like RAID 5 with

additional parity info allowing for fault tolerance against two
simultaneous drive failures
 RAID 10 (RAID 1 + 0): combines mirroring & striping to

provides high performance & fault tolerance but requires many
drives

ARCHITECTURE AND CODING 190

XXVI.Server Administration
 Monitoring and Performance Tuning

 System Monitoring: check system performance using tools like Nagios,
Zabbix, or Prometheus to detect potential issues early. For Windows, check
events, system and application error reported.
 Performance Tuning: optimize server performance by adjusting system

settings, managing resources, and addressing bottlenecks.
 Security Management

 User Management: Managing user accounts, permissions, and access
controls to ensure only authorized users can access the system.
 Security Patches: Regularly applying security patches and updates to

protect the server from vulnerabilities and threats.

 Certificate Installation: Generate a Certificate Signing Request (CSR) to

 Software Installation and Updates
 Installing Software: Installing and configuring server software and

applications as needed.
 Updating Software: Keeping server software and applications up to date to

ensure compatibility and security.
 Resource Management

 Disk Management: Monitoring and managing disk space usage to prevent
storage issues.
 Memory Management: Allocating and optimizing memory usage to

ensure efficient server performance.

ARCHITECTURE AND CODING 194

XXVII. Documentation
For a traditional formal project, following document are usually required:

Project Plan
Goal and Objective
Cost Benefit Analysis
Team & Staff
Schedule

Requirement Catalogue
User Role, Post, Rank, Group, List with name, department, address,

email & phone
Use Case: Operation, Process, Manual or Automatic Procedures,

Rules & Regulations

Functional Requirement
Function Name, ID & Description
Type: General, Case, Report & Administration
Mode: Online or Batch

Non-functional Requirement
Page loading time
Response time of user action
Number of concurrent users: average/ peak

ARCHITECTURE AND CODING 196

System documentation serves 3 purposes:
Design Verification by client
Implementation Guideline for developers or supporting staff to follow
System Understanding by takeover or follow-up team

Reminders
Never treat it as homework but need to work seriously
Desirable to simplify to contain only necessary and essential

information
Use free form easy understanding diagram to reduce the text needed

Requirement
 Cover all in details & confirm with user to avoid missing or inaccurate

implementation
 Involve all stakeholder and front-end operation staff during discussion
 Seek for highest authority opinion earlier to avoid overthrow design at final

stage
 Seek for approval before voice recording for any requirement meeting
 Simple point form list in email cc to all parties could meet the purpose
 Collect reply of group representative but not circulate one by one to save

time

 Ensure following items are covered during requirement collection:
 User type, role, group, authority, total number, on-leave resource

arrangement
 Registration, authentication & authorization
 Daily Operation Business Flow and Approval Process
 How many concurrent users’ maximum at a time or time period
 Application Form and what data or information to store
 Interface

ARCHITECTURE AND CODING 197

 Inquiry and Search criteria
 Availability, loading and response time required for each operation
 What reports to produce at what time including what information

System Sizing
 Determining software and hardware requirements over specific period, e.g.5

years
 Check expected number of users, transactions per second, data

type/size/volume
 Check average & peak loads, loading and response time
 Calculate memory, storage and network bandwidth, CPU speed and cores

required
 Estimation result will produce a final score and then could check vendor

what system model meeting benchmark are available

DATA MIGRATION AND CONVERSION 198

Chatper 4. Data Migration and Conversion
I. Definition

I. Data Migration
Data from one or multiple system to be migrated to the new system when the data
structure of the source and target are the same.

II. Data Conversion
Data from one or multiple system to be recreated in the new system due to
different data structure.

II. Source Data
Database Record

I. Table and Fields
All tables and fields other than system tables, those no longer use or
without data

II. Data Type
i. Text

ii. Numerical data
iii. Datetime
iv. Binary object, e.g. image

Script
Database SQL script in existing database that may be reused or need for
reference
e.g. views, triggers, functions or stored procedures

DATA MIGRATION AND CONVERSION 201

VII. Data Analysis
Assumption:

i. Data are in use
ii. Accurate without human error

iii. No missing records
* Need to clarify, and remove those not use and inaccurate data, and add back
those missing

Data Grouping
Static Data

Data never change
Dynamic Data

Base Data
 Essential for system initialization, startup and running
e.g. basic setting, menu options, system parameters or system code
 Subjected to changed irregularly after function enhancement

Data Dictionary Creation
 Data structure of the new system should be ready by the development team
 List out all tables and fields in source and target database, best in Entity-

Relationship Diagram

DATA MIGRATION AND CONVERSION 202

VIII. Relationship Mapping
Source and target database schema mapping
Determine data transformation rules:

What source tables/fields mapped to which target tables/fields
Field data types in old database changed to what data types in the new

database
Some field need to define default values for new tables during conversion
Separate value in source table field to multiple fields on target or vice vera,

e.g. address
Mapping relationship due to difference in data structure:

One-to-one
One-to-many
Many-to-one
Many-to-many

IX. Conversion Plan
A data conversion needs to be drafted with the following in details:

 List of data in source and their volume
 Data Mapping and Data Transformation rules
 Overall Approach: Rounds of Trial Run and Rehearsal, Freeze Period, Cut-over day
 Extraction, conversion and verification program logic
 Data Verification and Acceptance rules
 Result Report
 Handling of obsolete data

SECURITY & PRIVACY PROTECTION 207

Chatper 5. Security & Privacy Protection
I. Definition

Security refers to protection of computer system and the information under
processing against unauthorized and deliberately access, modification or destruction,
especially on confidential, sensitive or personal information. Protection of the later
refers to privacy control, usually govern by legal regulation on the collection, usage,
storage and distribution of the personal data.

II. Identify Threat
Security Thereat could be grouped into the following types:
I. Data Leakage

◆ Confidential information displayed without encryption
◆ Unauthorized access to read specific data
◆ Data transfer to other persons or location, either unauthorized or

unintentional
◆ Physical loss of data stored in electronic media such as USB flash disk

II. Hacking
Break into computer system for the following purpose:

◆ Access or steal data
◆ Modification of transaction data
◆ Modification of information display, i.e. web defacement
◆ Modification of information transmit, i.e. alter message
◆ Record deletion e.g. log
◆ Take control of the computer system, e.g. enable or disable door lock

III. Malfunctioning
◆ Disable specific computer system or devices from service
◆ Encryption of data to prevent enterprise from normal operation
◆ Replacement of specific computer system or devices

SECURITY & PRIVACY PROTECTION 208

III. Identify Attack
Malware

i. Virus
Computer program that could corrupt or delete data on computer.

ii. Trojans
Program download onto a computer that disguised as a normal program
that cause harm.

iii. Spyware
Software that enters a computer, gathers data and sends it to third parties
without consent.

iv. Worm
Computer program that utilizes security loophole (vulnerabilities) of a
target computer to replicate itself and spread over the computer network so
as to inflect more and more computers. It will consume large memory and
bandwidth.

v. Keyloggers
Software or hardware that records keystrokes type so as to steal password
or other confidential information.

Denial-of-Service (DDoS)
Make server machine or network resource to become unavailable by single or
multiple system flooding using excessive requests on them.

Zero Day Attack
Unreported or announced software vulnerability that hackers can exploit and
leave zero days to create patches or have workarounds.

Advanced Persistent Threat
Continuous hacking processes over long period of time that exploit
vulnerabilities in systems using malware, web phishing or email with malicious
URLs, in order to monitor and extract data from a specific target, to collect
information on surrounding infrastructure, to crack password and acquire
administrator privileges, to expand control to other workstations and servers.

Ransome
Lock user files, applications or systems by encryption of computer's master file
table or entire hard drive until a ransom is paid usually through a hidden
ransomware link in email or web page that could establish a connection to
callback server that set up unique keys to encrypt the data on target machine

SECURITY & PRIVACY PROTECTION 209

IV. Implement Prevention Measures
Data

Identify and classify information that need protection:
secret, confidential, sensitive or other important data such as personal
identification information

Encrypt personal identification information in print media, report, log, database,
etc.

Encrypt password in log, database, data or configuration file, etc.
Maintain and update access control list on data by user group

System Application
Maintain and update access control list on data and function by user group
Apply hash to personal identification information (print, report, log, database,

etc.)
Personal password or identification information should be hashed and cannot

decode
System password should be encrypted or masked (log, database, data or

configuration file, etc.)
Encryption apply to data storage or transmission
Key length of symmetric encryption such as AES should be at least 128-bit

while asymmetric encryption such as RSA should be at least 2048-bit
Cryptographic key for encryption & decryption should be changed from time to

time
Adopt 2-factor authentication (SMS/email) or challenge-response scheme for

important service or transaction. User have to provide correct response before
log in, such as CAPTCHA (Completely Automated Public Turing test to tell
Computers & Humans Apart) for form input submission

SECURITY & PRIVACY PROTECTION 216

V. Common Vulnerabilities
i. Broken Authentication and Session Management

Compromise poorly protected passwords, keys, or tokens to act on other user
identities.

ii. Cross Site Request Forgery (CSRF)
Force logged-on browser to send pre-authenticated request to vulnerable web
application so as to allow browser to perform hostile action

iii. Cross Site Scripting (XSS)
Execute script in browser to hijack user sessions, deface web sites or even
introduce worms

SECURITY & PRIVACY PROTECTION 217

VI. Establish Incident Handling Procedures
Follow existing plan & procedures, e.g. Incident Response, Data Backup &

Recovery or Operation
Reporting

Report the case to senior & responsible staff
Inform administrator
Notify end users best with estimated service resume time

Immediate actions to limit the impact:
Disable public access for web defacement by offline web server
Disconnect network cable to avoid affecting other computers
Power off computer to stop ransomware from encrypting more files

Server operation
Switch to alternate sites or networks if possible
Perform disaster recovery within required time frame and start up the

resilient system
Trace and Fix Problem

Trace root cause of the threat by referring to server log and system event
Check what data, file and programs, URL or email are accessed before the

incident
Trace attacker source IP addresses or other information
Trace how the attack is carried out and what changes were made

Further Follow up Action
 Report to the Police for investigation
 Change all passwords involved

Updated server patches and further change configuration or setting if
necessary
 Update manual, e.g. Incident Response Plan, Data Backup & Recovery Plan

or Operation Manual procedures with following details:
◆ Simple and clear steps to follow, including how to check and what

to change

SECURITY & PRIVACY PROTECTION 218

VII. Enforce Privacy Protection
Storage and Transmission

Personal identified information should be hashed to store and transmit in
electronic form.

Non identification personal information to be encrypted in storage and during
transmission.

Data transmission should be in secure channel.
For two information that could identify a particular person, one of them should

be encrypted.

Printout and Copy
No unauthorized printout or copy of personal information
Authorized printout or copy of personal information should be kept and covered

No private storage of personal information in any form
Data Transfer

Transfer of personal information in electronic form should be encrypted, and
put in sealed envelope, bag or locker box for physical form to prevent data
leakage to unauthorized parties.

Transfer of original copy of personal information depends only on reliable staff,
transport or couriers with sufficient packaging to prevent physical or damage.

Data Collection
Only partial personal identification information could be obtained for normal

business verification need.

Testing and Support
Production data if used for testing purposes, should be masked or encrypted,

and they should be cleared immediately after testing.

Data Retention
After authorized or legal retention period, data should be disposed in a non-

recoverable and not human understandable format. Data that need to be kept

PROCUREMENT PLAN 223

V. Invitation for Quotation or Tender
-Collect a contact list of suppliers with company name, staff name, title, email and
telephone.

Usually have dedicated person to follow account of large corporation or public
organization
-Public Organization may consider only a supplier in pool that require certain
condition to join
-Invitation for quotation or tender could be sent out by email. Tender requirement,

VI. Evaluation & Award
Evaluation is based on agreed rules and treatment should be equal to all supplier
Grading is calculated according to marking scheme
With same functions and features provided, if performance is also the same,

award should be given to the supplier or bidder with lowest product or service
price

VII. Purchase Order
Purchase order need to prepare and send to vendor after award with the following
information:

Order details on goods or services to be purchased, include brand, model name
and quantity

Contact Information of the buyer and vendor
Shipping and Billing Address
Contract and Payment Terms, including price, discounts or sales tax

USER ACCEPTANCE TEST PLAN 226

Chatper 7. User Acceptance Test Plan
I. Purpose
1. Test if the system meets the followings:

iii. User requirement specified in requirement, system or functional specification
iv. User expectation regarding system operation and user interface

2. Identify all specific and potential issues, correct and clear them before production

II. Deliverables
1. UAT Plan
2. Test Case

-Drafted by development team, amended and confirmed by users
-To be filled out by testers during User Acceptance Test
-Either in word or excel format
-Include the following items:

v. Test Case Number
vi. Test Scenario Description

vii. Operation Steps
viii. Expected Result

USER ACCEPTANCE TEST PLAN 229

VII. Issue Logging
Tester needs to record down issues found during UAT, either in excel or in logging
system such as Redmine with the following information:
1. Type

 Bug
Function not performed as expected or specified
 User Interface

Navigation, text display or graphics issue
 Performance

Loading and response time
 Setup

Incorrect system configuration or settings

2. Classification
i. Severity

Critical
System function unable to execute

High
Bug found or function different from expectation

ii. Urgency
High

Need to handle immediately
Medium

Need to handle within a fixed period

USER ACCEPTANCE TEST PLAN 231

XI. Administrative Procedure
 Attendance signature may be required for outside testers

XII. System Shutdown & Resume
 After bugs or issues are fixed, system need to shutdown to deploy the amended

application
 Development team will send email to inform users before the deployment and

after the system is resumed.

XIII. Review Meeting
After each round of UAT is completed, review meeting should be held between

development team and user whether UAT is passed or not, can continue the next
step or what to follow.

XIV. Quality Factor
Common factor regarding user requirement that could affect the UAT performance
leading to a high failure rate or many issues found:

Not documented clearly
Incorrect documentation
No in depth understanding
Misunderstanding
Different interpretation

SYSTEM ROLLOUT PROCEDURE 233

III. Rollout Planning
Identify major & supplementary tasks
Check task dependency, and prioritize them
Estimate resource required
Identify stakeholder and parties responsible for each task
List out acceptance criteria
Establish measurable targets

IV. Preparation Task
1. Clarify Contact Point, Roles & Responsibility

ROLE RESPONSIBILITY
User 5. Provide business requirement

6. Carry out result verification
7. Approval and acceptance

Project
Team

2. Monitor & review whole process
3. Liaison with User & Technical Teams
4. Vendor Management

Development
Team

6. Functional and technical design
7. Code development and bug fixing
8. System setup and configuration
9. Application Deployment
10. Extract, transform and load data
11. Data cleansing
12. Documentation

Infra & Network
Team

4. Server and cloud environment preparation and setup
5. Network cabling
6. Firewall and proxy configuration
7. Documentation

SYSTEM ROLLOUT PROCEDURE 239

4.Rollout Steps
 Old system stops and new system startup steps should be listed out.
 Old system stop sequence should be as follows and each may have more than one

instance:
◆ Web Server, Application, Database
 Execute Data Conversion Script to extract, transform and load production data to

new system
 Wait for other system to rollout if there are inter-system dependance
 Collect conversion log and compile exceptional report
 Provide rollout status, data conversion success and failure records, list out

error log or other problems encountered, suggest solutions of handling
obsoleted or incorrect data
 User Verification

5.Fallback Steps
 Condition needs to be agreed under what situation the old system should be restored,

i.e. not pass health check and serious problem discovered.
 Some minor issues such as incorrect text displayed could be fixed immediately not

affecting rollout
 New system stop sequence should be as follows and each may have more than one

instance:
Web Server, Application, Database
 Old system startup sequence should be as follows and each may have more than one

instance:

SCHEDULE 241

2. Interactivity
Tasks Start Day Finish Day
Requirement Collection DD/MM/YY DD/MM/YY

Requirement Specification
Product Analysis DD/MM/YY DD/MM/YY

Functional Specification
Interactivity Design DD/MM/YY DD/MM/YY

Information Design
Interface Design
Interaction Design

Prototyping DD/MM/YY DD/MM/YY

User Acceptance Test DD/MM/YY DD/MM/YY

Production Rollout DD/MM/YY DD/MM/YY

Maintenance Review DD/MM/YY DD/MM/YY

3. Architecture and Coding
Tasks Start Day Finish Day
Requirement Collection DD/MM/YY DD/MM/YY

System Analysis DD/MM/YY DD/MM/YY

System Design DD/MM/YY DD/MM/YY

Documentation DD/MM/YY DD/MM/YY

Platform Setup DD/MM/YY DD/MM/YY

Implementation DD/MM/YY DD/MM/YY

Coding
Unit Test

Installation and Deployment DD/MM/YY DD/MM/YY

Data Migration & Conversion DD/MM/YY DD/MM/YY

Testing DD/MM/YY DD/MM/YY

SIT
UAT

Security Audit & Privacy Review DD/MM/YY DD/MM/YY

System Rollout DD/MM/YY DD/MM/YY

Project Review Report DD/MM/YY DD/MM/YY

REFERENCE 246

Reference
1. Project Planning

1. 101 Common Causes - Why Do Projects Fail? International Project Leadership Academy,
calleam.com, 2016

2. 25 Point Implementation Plan to Reform Federal Information Technology Management, Vivek
Kundra, The White House, 2010

3. A Guide to Project Management Body of Knowledge (PMBOK Guide), 6th Edition, Project
Management Institute, 2017

4. A Project Manager's Book Of Forms, A Companion To The Pmbok Guide(Sixth Edition), 3rd Edition,
Cynthia Snyder Dionisio, Wiley,2017

5. Agile Coaching, Rachel Davies and Liz Sedley, Pragmatic Bookshelf, 2009-10
6. Agile Practice Guide, Project Management Institute, 2018-11
7. Agile Principles, Patterns, and Practices in C#, Robert C. Martin Micah Martin, Pearson, 2006-07
8. Designing Visual Interfaces: Communication Oriented Techniques, Kevin Mullet and Darrell Sano,

Prentice Hall, 1994
9. Exploring Requirements: Quality Before Design, Donald C. Gause and Gerald M. Weinberg, Dorset

House, 1989-09
10. Head First Design Patterns, Eric Freeman, Bert Bates, Kathy Sierra and Elisabeth Robson, O'Reilly

Media, 2004
11. Identifying and Managing Project Risk: Essential Tools for Failure-Proofing Your Project, Tom

Kendrick, AMACOM, 2009
12. Improvement Measures for Delivery of IT Projects, OGCIO, 2014
13. Information Technology Project Management, Kathy Schwalbe, Thomson Learning, 2002
14. IT Project Management: Infamous Failures, Classic Mistakes, and Best Practices, Ryan Nelson,

Amazon, 2020
15. IT 真相 打通 IT 與商務的通路, 楠真著, 廣東人民出版社 , 2019-01
16. Major Causes of Software Project Failures, Lorin J. May, Department of Computer Science,

University of Brasilia
17. Management Capability Assessment, Dennis Wong, Bleu Publications, 2021
18. Microsoft .NET-Architecting Applications for the Enterprise, Dino Esposito & Andrea Saltarello,

Microsoft Press, 2014
19. Multimedia ISO 9000 Logic Handbook, China Orient QA Co., Limited, 1994

REFERENCE 249

3. Architecture and Coding
System Design

12 Essential Skills for Software Architects, Dave Hendricksen, Pearson, 2012
12 More Essential Skills for Software Architects, Dave Hendricksen, Pearson, 2015
The Art of Scalability, Martin L. Abbott, Addison-Wesley Professional, 2015
Clean Architecture: A Craftsman's Guide to Software Structure and Design, Robert C. Martin,
Prentice Hall, 2017
Designing for Behavior Change, Stephen Wendel, O'Reilly, 2013
Enterprise Integration Patterns, Gregor Hohpe & Bobby Woolf, Pearson, 2003

SOA Design Patterns, Thomas Rischbeck & Thomas Erl, Prentice Hall, 2009
Strategy & Product Development for Complex Systems, Edward Crawley, Bruce Cameron &
Daniel Selva, Pearson, 2015
軟件架構設計, 温昱, 電子工業出版社, 2012-10

構建高性能 Web 站點 改善性能和擴展規模的具體做法,郭欣, 電子工業出版社, 2009-08

億級流量系統架構設計與實戰, 李琛軒, 電子工業出版社, 2024-05

億級流量網站架構核心技術, 張開濤, 電子工業出版社, 2017-04

IT アーキテクト最強の指南書, 日経 IT エンジニアスクール, 日経 NETWORK, 日経 BP,

2016-06

System Development
Algorithms, 4th Edition, Robert Sedgewick and Kevin Wayne, Addison-Wesley Professional,
2011-03
Effective Debugging, Diomidis Spinellis, Pearson Education, 2017
Effective Java, Second Edition, Joshua Bloch, Pearson Education, 2008
Effective JavaScript, David Herman, Pearson Education, 2013
Guide to the Certified Software Quality Analyst (CSQA) Common Body of Knowledge
Head First EJB, Kathy Sierra, Bert Bates, O'Reilly, 2003
Head Rush Ajax, Brett McLaughlin, O'Reilly, 2006

Software Exorcism, Bill Blunden, Apress, 2003
Software Requirement Patterns, Developer Best Practices, Stephen Withall, Microsoft Press,
2007-06
今晚來點 web 前端效能優化大補帖, 莫力全 Kyle Mo, 博碩, 2022

你所不知道的必學前端 Debug 技巧, 楊楚玄, 博碩, 2021

Web 開発者のための大規模サービス技術入門, 伊藤 直也 /田中 慎司, 技術評論社,

2010-07

REFERENCE 250

Database & Performance Tuning
Effective MySQL Optimizing SQL Statements, Ronald Bradford, 2018
Effective SQL, John L.Viescas, Addison-Wesley, 2017
High Performance MySQL, Baron Schwartz, Peter Zaitsev, Vadim Tkachenko, 2012
Oracle Database Problem Solving and Troubleshooting Handbook, Tariq Farooq (etc.), Addison-
Wesley, 2016-04
Oracle High Performance SQL Tuning, Donald Burleson, Oracle, 2001
Scalability Rules: Principles for Scaling Web Sites, Martin Abbott, Michael Fisher, Pearson, 2017
品悟性能優化, 羅敏, 清華大學出版社, 2011-05

海量資料庫解決方案, (韓)李華植, 電子工業出版, 2013-05

System Security
Java Security Handbook, Jamie Jaworski & Paul Perrone, SAMS, 2000
Penetration Testing: A Hands-On Introduction to Hacking Penetration Testing, Georgia Weidman,
No Starch, 2014-06
SQL Injection Attacks and Defense, Justin Clarke, Kevvie Fowler, Syngress, 2009
XSS Attacks: Cross Site Scripting Exploits and Defense, Seth Fogie, Jeremiah Grossman, 2007
セキュリティ最強の指南書, 日経 IT エンジニアスクール, 日経 NETWORK, 日経 BP, 2016-

07

User Interface
Designing Business: Multiple Media, Multiple Disciplines, Clement Mok, 1996
Design for How People Think, Stephen Wendel, O'Reilly, 2019-04
Designing with the Mind in Mind, Jeff Johnson, Elsevier, 2014

Internationalization
CJKV Information Processing, 2nd Edition, Ken Lunde, O'Reilly, 2009-02
中文系統徹底研究 輸入法與秀字, 李明清, 旗標, 1992

中文數位探索：從漢字輸入到電腦中文化的壯闊歷程, 墨磊寧, 台灣商務, 2025-02

遨遊 C 語言中文顯示的製作, 高衡緒, 和碩科技, 1993-08

ゼロからの OS 自作入門 , 内田公太, マイナビ出版, 2021-03

日本語入力を支える技術, 德永拓之, 技術評論社, 2012-03

Geographic Information System
Building a GIS, Dave Peters, ESRI, 2008
Building Web and Mobile ArcGIS Server Applications with JavaScript, Eric Pimpler, Packt,
2014
Designing Geodatabases, David Arctur & Michael Zeiler, ESRI, 2004

ABOUT THE AUTHOR 254

About the Author

Nicho Wong has over 25 years of working experience in the information technology
industry.

As a development manager, system analyst, analytical programmer and associate
producer for many years, he has been involved in many different kinds of projects,
including portal site, e-commerce website, content management system, stock
information system, electronic support system, geographic information system, e-
learning system, multimedia educational CD-ROM titles, mobile and social media
games, and many other government systems.

He has worked for 16 departments of the Hong Kong and Singapore government, 2
major telecommunication companies, banks, airline, and advertising company,
including small companies, famous public listing companies and multinationals.

Project size varies from small, medium to large. Team size ranges from two to
hundred people. Project expenses incurred range from hundred thousand to million,
and even hundred million of Hong Kong dollars.

He was graduated from the Singapore Polytechnic with Advanced Diploma in
Multimedia Development and from the University of Greenwich with a Bachelor of
Science degree in Computing.

He could be contacted by nichowong@dataflyer.net.

Read more on the topic:

System Development Instant Reference

https://www.amazon.com/dp/B0F1TTPGXD

Project Planning

How to complete the project on time, within budget and meet user expectation?

https://www.amazon.com/dp/B0DT99C8LP

Interactivity

How to start with information first, then move to interface and interaction?

https://www.amazon.com/dp/B0DB94XM8W

Architecture and Coding

What technology options are available to consider and how to choose from them?

https://www.amazon.com/dp/B0F1DS89FV

Security & Privacy Protection

How to defend your system and protect important data?

https://www.amazon.com/dp/B0DK3ZKZ86

Data Migration and Conversion

How to migrate and convert data from existing system?

https://www.amazon.com/dp/B0DF5P88Q1

Procurement Plan

How to acquire the appropriate resources and get all the approval?

https://www.amazon.com/dp/B0DGT2KD57

User Acceptance Test Plan

How to identify and resolve the potential issues before rollout?

https://www.amazon.com/dp/B0CWF1CVFG

System Rollout Procedure

How to release a system safely?

https://www.amazon.com/dp/B0DBGD4BQF

